If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+22x-63=0
a = 1; b = 22; c = -63;
Δ = b2-4ac
Δ = 222-4·1·(-63)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-4\sqrt{46}}{2*1}=\frac{-22-4\sqrt{46}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+4\sqrt{46}}{2*1}=\frac{-22+4\sqrt{46}}{2} $
| -4(1+3x)-3=-91 | | -1=b+12 | | -136=-17b | | -19v=95 | | 12m^2-24=0 | | 1a−(−3.7)=6.11 | | 8x-9.1=38.9 | | 6x2+7x+68=0 | | 5(x+4)=20+7x | | 4x-14=-2x+28 | | 19x-3=17x+2 | | 4(x+5)=2(2x+10) | | 16x+8x=100 | | 5x–9=2x+3 | | 2(x-8)=4x-18 | | 4w+3=6w-20 | | 0.5(3x+6)=1.5–(x+2) | | 16x+2(4x)=100 | | Y=4/x+0.2-5x | | 6n+3=-4(1-4n) | | F(n)=-3n+7 | | P-2=-7+3p | | P-3=5p+2p-5 | | A+7=-3a+5 | | (0)+2y=4 | | 15=-(p-5) | | n^2-5/3n=5 | | -10=-3(x+3) | | 9m-6=3m | | 7/3=x+2/3 | | 6^(4x-2)=12 | | 3x-4=12+9x |